Prix PRACE Ada Lovelace 2021 : Céline Merlet (CIRIMAT)

Soumis par MAROUZE le mar 15/03/2022 - 12:18
le 04/03/2021

Céline Merlet (CR CNRS, CIRIMAT) a reçu le prix PRACE Ada Lovelace 2021 dans le cadre de ses travaux sur les systèmes électrochimiques de stockage de l’énergie (batteries, supercondensateurs) et plus particulièrement sur les supercondensateurs carbone-carbone.

https://twitter.com/Genci_fr/status/1365220133199876097

Céline Merlet est également porteuse du projet CALMIP (p17037) intitulé Retour ligne automatique "Simulations de l’absorption des ions dans des carbones poreux modèles pour étudier les relations structure – performance dans les supercondensateurs" qui a consommé en 2020 plus de 700 000 h-cpu sur le Supercalculateur Olympe.

Extrait du Rapport d’Activité 2020 du projet P17027 PI Céline Merlet (CR CNRS, CIRIMAT). Illustrations pour les deux carbones étudiés "GAP8" et "QMD4x"

Félicitations à Céline pour son prix, de la part du Méso-Centre CALMIP !

Résumé du projet p17037 : Supercapacitors are of great interest as energy storage systems because they exhibit very high rates of charge/discharge, long cycle lifes, and they are made of cheap and light materials. These attractive properties arise from the electrostatic nature of the charge storage which results from ion adsorption in the electrode pores. Recently, it was demonstrated that ions can enter pores of sub-nanometer sizes leading to a huge increase of capacitance. This was an important breakthrough as the energy density of supercapacitors, relatively low compared to batteries, is what currently limits their application. The progress towards more powerful supercapacitors is limited by our incomplete understanding of the relation between their performance, in particular their capacitance and charging rate, and the complex structure of the porous carbon electrodes. To make progress we need a better fundamental understanding of the ion transport and electrolyte structure in the pores. In this project we are using molecular dynamics simulations to calculate the capacitive and transport properties of a range of systems. We focus on model ordered three-dimensional porous carbons which are currently the missing link between oversimplified geometries (e.g planar graphitic structures and nanotubes), and disordered realistic structures. This allows us to vary geometric descriptors, e.g. pore size and ion size, in a systematic way and obtain relevant microscopic information. This classical molecular dynamics study is coupled with the development of mesoscopic models in order to allow for a systematic screening of porous carbons for energy storage application. In addition to their attractiveness for energy storage, supercapacitors are now considered as potential CO2 capture systems, this aspect will also be investigated through molecular simulations.