AGENDA

e Vectorization

1/75 Software & Services Group, Energy Engineering Team

Do not re_invent the wheel

speedup
2.0 ,» Assembly

benchmark

' MKL Dgemm Intrinsics

MKL FFT

P benchmark
Application > N P
5 o Sopuprce code Use of intrinsics or assembly

for specific kernels

‘ Use Intel® Math Kernel

1.0 Library as much as possible

Use Compiler and Intel tools

to optimize your source code

One core basis comparison

0.0

2/75 Software & Services Group, Energy Engineering Team

Vectorization of Code

e Transform sequential code to exploit vector processing capabilities (SIMD)
— Manually by explicit syntax

— Automatically by tools like a compiler

for(i = 0; i <= MAX;i++)
c[i] = a[i] + Db[i];

-
a a[i+7] a[i+6] afi+5] afi+4] Na[i¥3] (a[i-i—'z] (a[i-'r‘l] 21[1]
+ +
/ /
b bli+7] b[i+6] b[i+5] bli+4] FoliF3]N ROl R
/ /
c cli+7] cli+6] c[i+5] cli+4] ReliFS]NRCHE2RECE R

3/75 Software & Services Group, Energy Engineering Team

Intel” MKL: Optimized Mathematical Building Blocks

. Fast Fourier
Linear Algebra Transforms Vector Math

* BLAS e Multidimensional * Trigonometric
 LAPACK FFTW interfaces * Hyperbolic
e Sparse Solvers e Cluster FFT * Exponential, Log
* [terative Power / Root
e Pardiso*
e ScaLAPACK

Summary

e Congruential » Kurtosis e Splines

e Wichmann-Hill e Variation coefficient e Interpolation

e Mersenne Twister * Order statistics e Trust Region

e Sobol * Min/max e Fast Poisson Solver
* Neiderreiter e Variance-covariance

* Non-deterministic

l Intel® MKL is an integral part of Intel® Composer XE I

4/75 Software & Services Group, Energy Engineering Team intel

Many Ways to Vectorize

Compiler:
Auto-vectorization (no change of code)
Compiler:
Auto-vectorization hints (#pragma vector, ..)
Compiler:
Intel® Cilk™ Plus Array Notation Extensions

Ease of use

SIMD intrinsic class
(e.g.: F32vec, Fé64vec, ...)

Vector intrinsic
(e.g.: _mm fmadd pd(..), mm add ps(..),..)

Assembler code
(e.g.: [vladdps, [v]addss, ...)

Programmer control

5/75 Software & Services Group, Energy Engineering Team

Control Vectorization !

Provides details on vectorization success & failure:
Linux*, Mac OS* X: -vec-report<n>, Windows*: /Qvec-report<n>

n Diagnostic Messages

0 Tells the vectorizer to report no diagnostic information. Useful for turning off reporting in case it
was enabled on command line earlier.

1 Tells the vectorizer to report on vectorized loops.
[default if n missing]

2 Tells the vectorizer to report on vectorized and non-vectorized loops.

3 Tells the vectorizer to report on vectorized and non-vectorized loops and any proven or assumed
data dependences.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the reason why they were not
vectorized.

6* Tells the vectorizer to use greater detail when reporting on vectorized and non-vectorized loops
and any proven or assumed data dependences.

*: First available with Intel® Composer XE 2013

6/75 Software & Services Group, Energy Engineering Team

Vectorization Report Il

35: subroutine fd(y) '
36: integer :: i
37: real, dimension(10), intent(inout) :: y
38: do i=2,10
39: y(i) = y(i-1) + 1
40: end do
41: end subroutine fd
novec.f90(38): (col. 3) remark: loop was not vectorized: existence

of vector dependence.

novec.£f90(39): (col. 5) remark: vector dependence: proven FLOW
dependence between y line 39, and y line 309.

novec.f90(38:3-38:3) :VEC:MAIN : loop was not vectorized:
existence of vector dependence

Note:

In case inter-procedural optimization (-ipo or /Qipo) is activated and
compilation and linking are separate compiler invocations, the switch
to enable reporting needs to be added to the link step!

7/75 Software & Services Group, Energy Engineering Team

Reasons for Vectorization Fails & How to Succeed

e Most frequent reason is Dependence:
Minimize dependencies among iterations by design!
e Alignment: Align your arrays/data structures
® Function calls in loop body: Use aggressive in-lining (IPO)
e Complex control flow/conditional branches:
Avoid them in loops by creating multiple versions of loops
e Unsupported loop structure: Use loop invariant expressions
® Not inner loop: Manual loop interchange possible?
e Mixed data types: Avoid type conversions
e Non-unit stride between elements: Possible to change algorithm to allow
linear/consecutive access?
e Loop body too complex reports: Try splitting up the loops!

e Vectorization seems inefficient reports: Enforce vectorization, benchmark !

Software & Services Group, Energy Engineering Team

IVDEP vs. SIMD Pragma/Directives

Differences between IVDEP & SIMD pragmas/directives:
*#pragma ivdep (C/C++)or 'DIRS IVDEP (Fortran)

—lgnore vector dependencies (IVDEP):

Compiler ignores assumed but not proven dependencies for a loop

=Example:
void foo(int *a, int k, int ¢, int m)
{
#fpragma ivdep
for (int i = 0; 1 < m; i++)
a[i] = a[i + k] * c;

}

*#pragma simd (C/C++)or 'DIR$S SIMD (Fortran):

Aggressive version of IVDEP: Ignores all dependencies inside a loop

It’s an imperative that forces the compiler try everything to vectorize

Efficiency heuristic is ignored

Attention: This can break semantically correct code!
However, it can vectorize code legally in some cases that wouldn’t be possible otherwise!

9/75 Software & Services Group, Energy Engineering Team

AGENDA

e Validation

10/ 75 Software & Services Group, Energy Engineering Team

Floating Point (FP) Programming Objectives

- Accuracy
® Produce results that are “close” to the correct value
v'Measured in relative error, possibly in ulp
- Reproducibility
® Produce consistent results
v'From one run to the next
v From one set of build options to another
v'From one compiler to another
v From one platform to another

- Performance
® Produce the most efficient code possible

4 N
These options usually conflict!

Judicious use of compiler options lets you control the tradeoffs.
Different compilers have different defaults.

11/75 Software & Services Group, Energy Engineering Team

Definition . From Gustafson « reminders »

Precision = Digits available to store a number (“32-bit” or “4 decimal”, for example)
Accuracy = Number of valid digits in a result (“to three significant digits”, for example)
ULP = Unit of Least Precision.

Precision is not a goal.

Precision is the means, accuracy is the end.

12 /75 Software & Services Group, Energy Engineering Team

Users are Interested in Consistent Numerical Results

N L . 4.012345678901111
Root cause for variations in results 4.012345678902222
- floating-point numbers =» order of computation matters! 4.012345678902222
4.012345678901111
- Single precision arithmetic example (a+b)+c != a+(b+c) 4.012345678902222
220N\ M970, N =] (infinitely precise result) 4.012345678901111
4.012345678901111
(226N, 228). 5+ T =5F (correct IEEE single precision result) 4.012345678901111
226" _ (9% - 1) =0 (correct IEEE single precision result) e spl o222
4.012345678902222
- Conditions that affect the order of computations 4.012345678901111
. 4.012345678902222
- Different code branches (e.g. SSE2 versus AVX)
4.012345678901111
- Memory alignment (scalar or vector code) 4.012345678902222
_ : 4.012345678902222
- Dynamic parallel task / thread / rank scheduling M
® Bitwise repeatable/reproducible results
repeatable = results the same as last run (same conditions)
reproducible = results the same as results in other environments
Environments = OS / architecture / # threads / CPU /

13 /75 Software & Services Group, Energy Engineering Team

The —fp-model switch

-fp model
- fast [=1] allows value-unsafe optimizations (default)
- fast=2 allows additional approximations (very unsafe)

- precise value-safe optimizations only
(also source, double, extended)
- except enable floating point exception semantics

- strict precise + except + disable fma +
don’t assume default floating-point environment

® Replaces old switches —mp, -fp-port, etc (don’t use!)

® -fp-model precise -fp-model source
" recommended for ANSI/ IEEE standards compliance, C++ & Fortran
® “source” is default with “precise” on Intel 64 Linux

14 /75 Software & Services Group, Energy Engineering Team

Value Safety

ANSI/ IEEE standards compliance C++ & Fortran:

-fp-model source or —-fp-model precise
®* Prevents vectorization of reductions
®* No use of “fast” division or square root

Ensures ‘Value Safety’ by disallowing:

x/x<1.0 x could be 0.0, o, or NaN

X—-y & -(y-Xx) If x equals y, x —y is +0.0 while — (y — x) is -0.0
Xx—Xx <% 0.0 x could be « or NaN

x*0.0 <~ 0.0 x could be -0.0, -, or NaN

x+ 0.0 x x could be -0.0

(x+y)+z& x+ (y+2) General reassociation is not value safe

(x == x) & true x could be NaN

15 /75 Software & Services Group, Energy Engineering Team

Value Safety

Affected Optimizations include:
® Reassociation

® Flush-to-zero

® Expression Evaluation, various mathematical simplifications

® Math library approximations
® Approximate divide and sqrt

[-no]-prec-div /Qprec-div[-]

® Enables[disables] various divide optimizations
- X/ye®x*¥(1.0/y)
= Approximate divide and reciprocal

[-no]-prec-sqrt /Qprec-sqrt[-]
® Enables[disables] approximate sqrt and reciprocal sqrt

16 /75 Software & Services Group, Energy Engineering Team

Intel® Math Kernel Library

® Linear algebra, FFTs, sparse solvers, statistical, ...
- Highly optimized, vectorized
- Threaded internally using OpenMP*
- Repeated runs may not give identical results

® Conditional BitWise Reproducibility
- Repeated runs give identical results under certain conditions:

® Same number of threads

® OMP_SCHEDULE=static (the default)

® Same OS and architecture (e.g. Intel 64)

® Same microarchitecture, or specify a minimum microarchitecture

® Consistent data alignment
- Call mkl_bwr_set(...)

17 /75 Software & Services Group, Energy Engineering Team

Conditional Numerical Reproducibility

® Root cause for variations in results
— With floating-point numbers =» order of computation matters!

— Example (a+b)+c = a+(b+c)

263 + 1 + -1 =263 (infinitely precise result)
(2% + 1)+ -1 =0 (correct IEEE double precision result)
2 6N NN N -1 \= 2552 (correct IEEE double precision result)

® Intel MKL 11.0 for Xeon includes deterministic scheduling (fixed # of threads) and code
path options

- To get the same results on every Intel processor supporting AVX instructions or later
O function call: mkl_cbwr_set(MKL_CBWR_AVX)
O environment variable: set MKL_CBWR_BRANCH="AVX”

® Intel MKL 11.1 removes the data alighment restriction

18 /75 Software & Services Group, Energy Engineering Team

Reproducibility of Reductions in OpenMP*

® Each thread has its own partial sum

Breakdown, & hence results, depend on number of threads

Partial sums are summed at end of loop

Order of partial sums is undefined (OpenMP standard)
® First come, first served
" Result may vary from run to run (even for same # of threads)
® For both gcc and icc

® Can be more accurate than serial sum
For icc, option to define the order of partial sums (tree)

" Makes results reproducible from run to run

" export KMP_FORCE_REDUCTION=tree (may change!)

v May also help accuracy

v’ Possible slight performance impact, depends on context
v Requires static scheduling, fixed number of threads

v currently undocumented (“black belt”, at your own risk)

v See example

19 /75 Software & Services Group, Energy Engineering Team

References

e [1] Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

The Software Vectorization
Handbook

® [2] Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

e [3] Steven S. Muchnik, “Advanced Compiler Design and Implementation”

e [4] Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

- http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-
compilers/
- http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

- http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-
compiler-options-for-sse-generation-and-processor-specific-optimizations/

e The Intel® C++ and Fortran Compiler Documentation, “Floating Point Operations”

e “Consistency of Floating-Point Results using the Intel® Compiler”
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-

compiler/

e Goldberg, David: "What Every Computer Scientist Should Know About Floating-Point Arithmetic” =&
Computing Surveys, March 1991, pg. 203 ;

e the new Intel® BWR features — see this article for more details

e We need your feedback on missing, failing or suboptimal compiler functionality

Please file a Premier case or post your findings/wishes to the compiler user forum

20/ 75 Software & Services Group, Energy Engineering Team

Questions

o

} \ e

“Prediction is very difficult, especially about the future”
by Niels Bohr, Physicist, 1885-1962

—

(intel’) Software & Services Group, Energy Engineering Team

